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ABSTRACT

Three strategies for creating probabilistic forecast outlooks for El Niño–Southern Oscillation (ENSO)

are compared. One is subjective and is currently used by the NOAA/Climate Prediction Center (CPC) to

produce official ENSO outlooks. A second is purely objective and is based on the North American

Multimodel Ensemble (NMME). A new third strategy is proposed in which the forecaster only provides the

expected value of the Niño-3.4 index, and then categorical probabilities are objectively determined based

on past skill. The new strategy results in more confident probabilities compared to the subjective approach

and higher verification scores, while avoiding the significant forecast busts that sometimes afflict the

NMME-based objective approach. The higher verification scores of the new strategy appear to result from

the added value that forecasters provide in predicting the mean, combined with more reliable represen-

tations of uncertainty, which is difficult to represent because forecasters often assume less confidence than

is justified. Moreover, the new approach can produce higher-resolution probabilistic forecasts that include

ENSO strength information and that are difficult, if not impossible, for forecasters to produce. To

illustrate, a nine-category ENSO outlook based on the new strategy is assessed and found to be skillful. The

new approach can be applied to other outlooks where users desire higher-resolution probabilistic forecasts,

including the extremes.

1. Introduction

Aside from the contribution of climate change, the

state of El Niño–Southern Oscillation (ENSO) is the

leading source of skill in subseasonal-to-seasonal cli-

mate outlooks out to a year (Barnston et al. 2010; Peng

et al. 2012). Hence, many national and international

climate services provide outlooks for three categories:

warm (El Niño), neutral, and cool (La Niña) phases of

ENSO.While the indices and thresholds for ENSO vary

among the services, outlooks are presented probabilis-

tically, with percentages assigned to the three cate-

gories for the coming months or seasons. Each month at

NOAA’s Climate Prediction Center (CPC), a team of

forecasters (who are included as authors on this paper)

considers the latest predictions of the Niño-3.4 sea

surface temperature (SST) index (area-averaged SST

anomaly over 1208–1708W, 58S–58N) and issues proba-

bilities for overlapping seasons that cover the next

9 months. Forecast guidance comes in many different

forms: often model displays are deterministic (Barnston

et al. 2012, 2017), as well as probabilistic (Unger et al.

2009). While probabilities can be developed using indi-

vidual models, forecasters typically consider those from
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various multimodel combinations (Tippett et al. 2012;

Barnston et al. 2015; Becker and van den Dool 2016).

The probabilities from each forecaster are collected and

then averaged to form the official NOAA/CPC ENSO

probabilistic outlook.

As forecasts started to point to the arrival of the major

2015–16 El Niño (e.g., L’Heureux et al. 2017), there was

clear user interest in a ‘‘strength outlook’’ that would not

only provide the probability for El Niño occurrence, but

also give the likelihood that El Niño would exceed

specified thresholds. Such outlooks are critical for dif-

ferentiating between weaker and more extreme events.

Guidance tools are capable of providing strength in-

formation, and official updates have sometimes provided

qualitative predictions of forecast strength. However,

there are challenges inherent in expanding the number of

categories in the probabilistic outlooks.

One issue is related to asking human forecasters to

expand the number of categories they predict. Even

with three-category probabilities, forecasters some-

times struggle to produce a probability distribution that

is statistically consistent with what they expect to oc-

cur. For instance, one can derive the expected Niño-3.4
value associated with a forecaster’s probability forecast

because three-category probabilities are sufficient to

derive a Gaussian probability distribution function

(PDF; see the appendix for details on converting a

three-category probability forecast into a Gaussian

PDF). However, when the probability of El Niño (or,

conversely, La Niña) is near 100%, as in the midst of

the strong 2015–16 El Niño, the Gaussian PDF is highly

sensitive to the precise probabilities assigned to the

three categories. That is, whether the probability of

El Niño is 99.9% or 99.99% has a significant impact on

the mean and variance of the implied PDF. The prob-

lem with this situation is that even the experienced

forecaster is unlikely to appreciate all the implications

of these probabilities.

Figure 1 illustrates this difficulty, showing two hy-

pothetical distributions with close to 100% chances for

El Niño (using NOAA’s 10.58C threshold). In this

example, the chances of Niño-3.4 values in excess

of 12.08C (as was observed in 2015–16) can vary any-

where from 86% (area under the blue curve) to 97%

(area under the green curve). Also, the implied ex-

pected value (the mean) is either 12.98 or 13.88C.
Thus, the choice of a categorical probability to the 10th

or 100th of the 99th percentile can have substantial

consequences on the probabilities of an extreme and

the expected mean value.

Given that it is difficult for forecasters to provide

probabilistic information for the extremes, perhaps ob-

jective model guidance alone could be used to form the

probabilities for ENSO strength outlooks. However,

it quickly becomes controversial which model or set

of models should be relied upon, and even then,

selecting a method to develop the probabilities from

the selected model is also not trivial.1 Putting this issue

aside, addressing the question of whether objective

forecasts should be prioritized requires comparing

them against the performance of subjective forecasts.

In addition, we would argue that measures of average

skill alone are not adequate because large forecast

busts, as well as average performance, are an important

consideration for consumers of forecast products. To

date, few, if any, verification assessments have gone

beyond presenting average skill, and we will go beyond

that here.

To navigate these forecasting challenges, we de-

velop a new scheme for probabilistic ENSO outlooks

that is based on limited subjective forecaster inputs.

Instead of relying on the forecaster to develop probabil-

ities, we propose that the forecaster only be responsi-

ble for predicting mean values, and that probabilities be

FIG. 1. Gaussian probability distribution functions based on a

99.9% chance of El Niño (blue curve) vs a 99.99% chance (green

curve). El Niño is defined by Niño-3.4 index values (shown along

the x axis) that are greater than or equal to 10.58C. Red shading

under the curves indicates the probability that the Niño-3.4 fore-

cast is in excess of 12.08C, indicating a major El Niño.

1 One might hope that someday the scientific community settles

on a single, all-encompassing forecast strategy, but until such a day,

forecasters will desire the flexibility to consider multiple forecast

inputs. Model developers and statisticians enable this approach by

continually creating updated model(s) and new forecast tools. At

any given time, there are several model suites and combinations

that are favored by forecasters over others, but these evolve and get

supplanted by other methods over time. So, the role of forecasters

is often akin to the role of jurors, facing multiple lines of evidence

and a requirement to come up with the most defensible judgment

possible.
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derived from the statistics of the variable of interest

(in the case of ENSO, the Niño-3.4 SST index) and the

estimated forecast skill. Application of this scheme to

ENSO forecasts also serves as a proof of concept for

other probabilistic outlooks that depend on forecaster

inputs, which might be the mean, median, or most

likely value (mode). This hybrid approach is arguably

intuitive to the forecaster, as most of their model

guidance is presented as ensemble means, therefore

relieving them of the obligation to characterize the

forecast uncertainty. And, for the purposes of de-

veloping an ENSO strength outlook, it has the benefit

of generating probabilities of exceedance for any

specified threshold, including the extremes. While

we test these ideas on a record of limited length

(41 forecasts), the results of our proposed strategy

shows consistency across a number of different events

and provide a future pathway for extending the cur-

rent outlook beyond three categories.

The data and methods are discussed in section 2,

forecast verifications are presented in section 3, and

section 4 provides a discussion and ideas for future work.

2. Data and methods

a. Forecast strategy

Observed monthly values of the Niño-3.4 index are

nearly Gaussian distributed, passing the Kolmogorov–

Smirnov test at the 5% level (see Fig. S1 in the online

supplemental material). The mean and variance are

required to specify a Gaussian distribution. In the pro-

posed approach, the forecasters are responsible for

supplying the mean Niño-3.4 index value for each fore-

cast lead based on their assessment of available dy-

namical and statistical models. The forecast standard

deviation s is taken to be

s5s
climo

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(12 r2)

p
, (1)

where r is the Pearson’s correlation coefficient between

the predictions and their corresponding observations, and

sclimo is the observed climatological standard deviation.

So far, research suggests that most of the variation in

uncertainty is across leads and starts/targets, and not

from one year to another (e.g., Kumar and Hu 2014).

Therefore, it is reasonable to assume that forecasts

and observations for a given target and lead are joint-

Gaussian distributed. Thus, the forecast correlation skill

can be used to adjust the observed (or climatological)

standard deviation tomatch the implied forecast standard

deviation. This variance adjustment reflects the fact that

the forecast uncertainty tends to increase with longer

lead times and that there are months when Niño-3.4

prediction is more difficult (e.g., associated with the

spring predictability barrier).

In this instance, the climatological, seasonally varying

standard deviation of the Niño-3.4 index is computed

over the 1982–2010 period. The adjusted standard de-

viation is computed for each start month and across

forecast lead times. This adjustment has the effect

of narrowing the probability distribution function pro-

portionately to forecast skill (or confidence). For starts

and leads where r is zero or close to zero, the forecast

distribution will be close to the climatological distribu-

tion. Though not encountered in this analysis, if the

forecast skill were negative, the distribution would typ-

ically be set to climatology. Here, the forecast skill is

estimated using the 1982–2010 hindcasts of the Niño-3.4
index from the North American Multimodel Ensemble

(NMME; see more details below). Therefore, with

only the forecaster input of the mean Niño-3.4 index,

probabilities can be obtained for any number of cate-

gories or for exceeding any specified threshold. Within

this paper, this proposed forecast strategy will be re-

ferred to as CPCcalib.

Often, when calibrating a model forecast, the mean

of the distribution is also adjusted by regressing the

ensemble mean forecast against the observations. In

principle, forecasts with near-zero skill should also

have a forecast mean (signal) near zero. Within this

paper, the NMME ensemble mean anomalies are used

(see discussion below), but regression adjustment for the

mean has not been employed in the interest of a more

direct comparison between the spread calibration ap-

plied to the forecaster mean and the spread calibration

applied to NMME. To help justify this simplification,

Barnston et al. (2017; see their Fig. 11) demonstrated

that the NMME is mostly free of amplitude biases, so a

regression adjustment would likely result in only small

changes.

b. Model and observational data

The North American Multimodel Ensemble comprises

eight coupled ocean–atmosphere models: GFDL-CM2p1-

aer04, NASA-GMAO-062012, COLA-RSMAS-CCSM4,

GFDL-CM2p5-FLOR-A06, GFDL-CM2p5-FLOR-B01,

CMC1-CanCM3, CMC2-CanCM4, and NCEP CFSv2

(Kirtman et al. 2014). Most of these models are initial-

ized either toward the end of each month or near the

beginning of the following month and are run forward

up to 12 months. The one exception is the CFSv2 hind-

cast, which initializes four members every 5 days, for a

total of 24 forecasts over the span of the month. The

real-time runs of CFSv2 (after 2011), however, are ini-

tialized within the first week of each month. Herein, the

0-lead forecast refers to the first season following the
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initialization: so for example, for runs made in early

January, 0 lead is the average of January–March.

Observed Niño-3.4 index values are based on version

5 of the NOAA Extended Reconstructed Sea Surface

Temperature dataset (ERSST; Huang et al. (2017)).

This dataset is the basis for NOAA’s official ENSO

index, the oceanic Niño index, which is the 3-month

running average of Niño-3.4 index values (Kousky and

Higgins 2007). Because there are trends in the Niño-3.4
index (L’Heureux et al. 2013), departures are com-

puted based on rolling 30-yr monthly average periods

that are updated every 5 years.

The correlation coefficient between the observed

Niño-3.4 index and the NMME-predicted index is de-

termined using the hindcast (1982–2010) ensemble

mean from ;100 equally weighted members. Figure 2

shows that skill varies as a function of lead time and

start month. For most models the seasonal cycle and

mean biases are removed by subtracting out the lead-

dependent, monthly mean climatology from 1982 to

2010. However, because of a discontinuity in the ocean

initial conditions around 1999 (Xue et al. 2011), the

CFSv2 and CCSM4 models use a 1999–2010 base pe-

riod (Tippett et al. 2017; Barnston et al. 2017). Both

the model data and observations are averaged across

overlapping 3-month seasons, so for January–March,

February–April, March–May, etc.

c. Forecast verification

Two probabilistic verification measures are used to

test the quality of the forecasts: the ranked probability

skill score (RPSS) and logarithmic skill score (LSS). The

RPSS evaluates the sum-squared error of cumulative

forecast probabilities, while LSS is the log of the prob-

ability for the verifying category. RPSS evaluates the

entire probability distribution function (inclusive of all

categories), whereas LSS is a local score, meaning the

probabilities given to categories other than the verifying

one do not affect the score.

Both RPSS and LSS are computed relative to a

reference forecast, which here is the climatological

probabilities computed over 1982–2017. Positive scores

indicate skill that is better than a climatology forecast,

scores at zero have the same skill as a climatology

forecast, and negative scores mean the forecast scored

worse than the climatology forecast. Higher scores are

achieved if the forecaster assigns higher probabilities to

the category that verifies, especially if the climatological

chance of occurrence is very low. LSS and RPSS are

‘‘strictly proper,’’ which indicates forecasters maximize

their skill score by issuing forecasts that match their true

beliefs, rather than by ‘‘playing the system’’ in any way

(Murphy and Winkler 1971).

One of the characteristics of LSS is that it is a measure

of information and increases with the number of

categories that are skillfully forecast, such as forecasting

for various ENSO strengths (Tippett et al. 2017). In

other words, skillful predictions made for nine forecast

categories will achieve higher LSSs than forecasts of

comparable skill made for three categories. RPSS is the

weighted average of the Brier skill scores of the cumu-

lative probabilities (Bradley and Schwartz 2011), so that

skillful forecasting, even with an increasing number of

forecast categories, does not significantly change RPSS.

At NOAA/CPC, the forecasters have been providing

three-category ENSO probabilities since January 2012.

For internal, test purposes, they have been providing

the mean values of Niño-3.4 (8C) since July 2015. For

comparison between these two methods and, also, the

NMME, only the period from June 2015 to September

2018 is evaluated, for a total of 41 forecasts. Figures in the

online supplemental material contain a comparison be-

tween availablemethods fromJanuary 2012 to the present.

3. Results

a. Three-category outlooks

The probabilities produced by the forecasters (CPCoff)

are compared with the proposed forecast strategy

FIG. 2. Anomaly correlation between the ensemble mean

NMME seasonal predictions (based on the 1982–2010 hindcasts)

and the observed (ERSSTv5) seasonal Niño-3.4 index. The x axis

shows the month the forecasts are initialized, and the y axis is the

forecast lead time (for overlapping seasons). For an initial month of

January, 22 lead corresponds to the November–January average,

where November and December are computed from observations

and January is a forecast. Lead-zero and beyond predictions are

based entirely on forecasts and, for a January start, 0 lead is the

January–March average.
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(CPCcalib), using20.58/10.58C as thresholds in Niño-3.4
(see schematic in Fig. 3). Probabilities are also

presented for the calibrated NMME (NMMEcalib),

which is computed exactly as in CPCcalib, but using the

multimodel’s ensemble mean instead of the forecaster

mean. Using these three different forecast strategies, Fig. 4

shows the probabilities for La Niña (Niño-3.4#20.58C),
neutral (20.58C , Niño-3.4 , 10.58C), and El Niño
(Niño-3.4$10.58C) conditions for the22-lead, 0-lead,

3-lead, and 7-lead forecasts. At all forecast lead times,

probabilities from CPCoff (green line) generally have

lower variance than those from NMMEcalib (orange

line) or CPCcalib (black line). Most of the time the

NMMEcalib or CPCcalib approaches have more ex-

treme probabilities than CPCoff. In other words, the

probabilities for NMMEcalib or CPCcalib deviate

more from their climatological frequencies, while proba-

bilities for CPCoff are more muted and tend to be more

conservative than those from the other methods. How-

ever, there are times when CPCoff has more aggressive

probabilities that are closer to 0% or 100%, but these

times appear to occur only when one or both of the other

two strategies are similarly extreme.

Figures 5 and 6 display the RPSS (left panels) and LSS

(right panels) verifications from June 2015 to September

2018 of the three-category ENSO outlooks. From June

2015 to June 2016, a strong El Niño was conducive to

very skillful forecasts among all forecast strategies

(Fig. 5), which correctly gave chances close to 100%

(Fig. 4). With the decay of El Niño and the return to

ENSO-neutral conditions during the summer of 2016,

the skill scores of all three approaches were negative

across all lead times. However, the NMMEcalib strug-

gled noticeably and had the most negative skill scores

compared to the other methods (Fig. 5). This negative

skill is in large part due to NMMEcalib assigning high

probabilities for the rapid onset of La Niña during

summer 2016 even at short lead times (see 0- and 3-lead

panels in Fig. 4). The RPSS and LSS measures are espe-

cially unforgiving of high forecast probabilities for an in-

correct category, and their values are negatively skewed.

Once again in the late spring and summer of 2017,

the NMMEcalib had significantly negative skill scores

(Fig. 5). This time, NMMEcalib was favoring higher

chances, relative to the other approaches, for El Niño
in mid-2017, yet ENSO remained neutral during this

period. Prediction errors arose across all three strate-

gies, but were especially severe for NMMEcalib for

long-lead forecasts made for targets toward the last

quarter of 2017 when La Niña returned and yet prob-

abilities for La Niña remained low (see 3- and 7-lead

panels in Fig. 4).

Due to these strongly negative LSS and RPSS

values, the mean NMMEcalib scores are mostly neg-

ative and generally lower than those of CPCcalib and

CPCoff, presented by lead in Fig. 6 (top row). How-

ever, upon closer inspection, NMMEcalib frequently

outscores CPCoff (more positive RPSS and LSS) in

part because the NMMEcalib probabilities are more

confident overall. This feature of NMMEcalib skill is

therefore more apparent in the median score than the

mean score (Fig. 6, second row). Generally, CPCoff has

lower median scores, which is likely due to the more

conservative probabilities assigned by the forecaster.

However, the higher probabilities associated with

NMMEcalib clearly have a downside when they are

assigned to the incorrect verifying category, as demon-

strated by the lower minimum RPSS and LSS values

(Fig. 6, third row).

Analogous to the Sharpe ratio (Sharpe 1994), the

bottom row in Fig. 6 shows the ratio of the mean skill

score over the standard deviation. The Sharpe ratio, or

reward-to-variability ratio, is often used to track the

performance of stocks and mutual funds. For portfolios

with a similar level of financial return, the portfolio with

higher volatility will have a lower ratio. Therefore, in

FIG. 3. Schematic of the CPCoff and CPCcalib forecast strategies.
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order to increase returns, a high-variability portfolio

needs to compensate with a higher rate of return. In the

current application, a user may desire higher skill

scores overall, but if that skill is also accompanied

with a higher risk of large errors, then such a strategy

may not be beneficial. Given the higher variability in

the LSS and RPSS scores for NMMEcalib (Fig. 5), the

ratio for NMMEcalib tends to be lower than CPCcalib

and CPCoff across nearly all forecast leads (except

for 22 lead).

Overall, CPCcalib has several attractive attributes that

subsume the best qualities of the other two approaches. It

allows forecasters to avoid the large forecast busts of

NMMEcalib, yet have better overall skill than CPCoff.

In other words, CPCcalib simultaneously provides the

forecaster more courage in the form of higher probabil-

ities in situations where it is appropriate to do so, yet

guards against foolishly high probabilities in scenarios

that deserve more caution. CPCcalib provides a higher

ratiowith a reduction in negativeRPSS/LSS scores, along

with higher mean and median scores that compare well

against the most skillful approaches. Further, CPCcalib

removes the burden of estimating uncertainty, which is a

challenge for forecasters considering multiple models

FIG. 4. Predicted probabilities for the three-category ENSO outlooks using the NMMEcalib (orange), CPCcalib (black), and CPCoff (green)

forecasting strategies. Within each set of panels, (top) La Niña (Niño-3.4# 20.58C), (middle) ENSO neutral (20.58C, Niño-3.4, 10.58C),
and (bottom)ElNiño (Niño-3.4$10.58C) conditions are shown. The target season of the forecast is displayed by the centeredmonth along the

x axis. The top-left set of panels displays the 22-lead forecast, the top-right set shows the 0-lead forecast, the bottom-left set displays

the 3-lead forecast, and the bottom-right set shows the 7-lead forecast. Forecasts are made each month from June 2015 to

September 2018.
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and model combinations, all with varying skill levels and

characteristics.

Finally, in a longer record going back to January 2012

(CPCcalib is not available prior to June 2015), the skill

characteristics are generally reproduced (Figs. S2 and

S3), with the exception that the median RPSS and LSS

values are higher for CPCoff than NMMEcalib for lead

4 and beyond.

b. Nine-category outlooks

We present verifications for nine categories in Figs. 7

and 8 to evaluate whether the forecast process is

skillful at finer resolutions. These categories are based

on 0.58C increments in the Niño-3.4 index (62.08,
61.58, 61.08, 60.58C), which correspond to informal

strength thresholds of ENSO. Because the forecaster

does not create probabilities at such fine resolution,

only NMMEcalib and CPCcalib are compared. The

median RPSS values for both strategies are very sim-

ilar to the three-category outlook, with hardly any

discernible change at all. The only noticeable change

in RPSS going from three to nine categories is the

reduction in the mean and minimum values associated

with NMMEcalib (Figs. 5 and 6). For a forecast with

the same skill, a slight decline in RPSS can occur with

the addition of more categories as shown by the joint-

Gaussian model of Tippett et al. (2017). In contrast,

CPCcalib is very similar to its three-category result, so

the addition of categories does not noticeably change

the RPSS.

For LSS, however, a more promising result emerges,

as shown by a slight increase with the addition of more

categories, which is particularly noticeable at shorter

leads. The mean, median, and maximum LSSs mostly

increase for CPCcalib and NMMEcalib compared to

three categories. The one conspicuous exception is the

miss in the22-lead CPCcalib forecast that occurs for the

August–October 2015 target (forecast made in early

October 2015), which was in excess of 12.08C and

was not anticipated. Overall, as Tippett et al. (2017)

demonstrated using NMME, the LSS measure indicates

that ENSO forecasts for narrowly defined categories,

which include the extremes, have more skill than wider

categories for some leads and targets.

4. Discussion

The three strategies are compared only over a fairly

short duration, but contain the major 2015–16 El Niño,
two subsequent La Niñas in 2016–17 and 2017–18, and

intervening periods of ENSO neutral conditions. We

expect that this period is representative of forecaster

tendencies over a longer record, but to increase confi-

dence, we plan to continue to track these strategies over

an extended period and revisit these results. Yet it is

encouraging that the proposed forecast strategy is already

paying dividends over such a short period. An attrac-

tive aspect of CPCcalib is that it can provide probabi-

listic predictions for any threshold or extreme, and

not just for the Niño-3.4 index, but for any variable.

FIG. 5. (left) RPSSs and (right) LSSs for three-category ENSO outlooks presented as a function of target season (centered month

displayed along the x axis) for the NMMEcalib (orange), CPCcalib (black), and CPCoff (green) forecasting strategies. Each line shows

forecast leads (top) from22 to11, (middle) from12 to14, and (bottom) from15 to17. Forecasts are made eachmonth from June 2015

to September 2018.
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For variables that are non-Gaussian (e.g., Niño-112

index, precipitation), a different distribution or a trans-

formation can be used to generate the probabilities. Other

strategies to arrive at the forecast probabilities from

forecaster inputs can also be tested and employed, such

as using Bayes’s theorem. For a Gaussian distribution,

such as that of Niño-3.4, the application of Bayes’s theo-

rem is equivalent to linear regression, so this approach has

already been implicitly accounted for in this study.

Overall, it appears that when forecasters are relied

upon to develop probabilities from model inputs

(CPCoff), they tend to err toward more conservative

probabilities. This is not necessarily a bad strategy, as it

reduces the frequency of large errors, but it comes at the

cost of higher skill scores in the median. In other words,

forecasters provide less confident probabilities, which is

suitable in situations where there should be less confi-

dence (e.g., long-lead forecasts made early in the year).

However, the less confident probabilities more often

result in lower RPSSs and LSSs. Perhaps this is not al-

together surprising because of ‘‘loss aversion’’ biases in

which people prefer avoiding losses more than acquiring

comparable gains (Kahneman and Tversky 1979).

However, on the flip side of the coin, we demonstrate

that using the NMMEcalib strategy, which does not rely

on forecaster adjustment, can result in probabilities that

are too high, even in situations where it may be more

prudent to scale them back. Interestingly, the over-

confidence of NMMEcalib is not due to underestimating

uncertainty but to overestimating signal (shifts in the

FIG. 6. As in Fig. 5, but RPSSs and LSSs are displayed as a function of lead time, from22 to 7 lead. (top) Mean

skill scores, (second row) median skill scores, (third row) the maximum scores (solid lines) and minimum scores

(dashed lines), and (bottom) the ratio of the mean skill score over the standard deviation.
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mean). But, our three-category results also show that

NMMEcalib scores higher overall than CPCoff in the

median (notably, not in the mean). No doubt this in part

due to more frequent assignment of higher probabilities

in the verifying category, which result in higher RPSS

and LSS values. This may be a desirable quality for

certain users, but others may be troubled by the higher

volatility (and lower mean to standard deviation ratio)

in the skill scores associated with NMMEcalib.

Therefore, an ideal forecast strategy would be to

guard against large forecasts errors (as in CPCoff),

while increasing the probabilities (NMMEcalib), es-

pecially when the forecaster should be more confident.

Our results suggest the CPCcalib forecast strategy is a

step toward this ideal. Why is this the case? We can

only speculate given the subjectivity of human in-

volvement, but the model guidance that the forecasters

consider is typically presented as ensemble means.

Even when individual members are available, it is not

as intuitive to optimally combine the data to arrive at

the forecast probabilities. Several sets of probabilistic

guidance are also considered each month, but again, it

is not clear to the forecaster how to optimally synthe-

size all of this information. Regardless, it appears

forecasters are quite capable of assimilating large

amounts of forecast guidance to provide an appropri-

ate value for the mean, but where they struggle is in

representing the uncertainty.

This study carries with it the implication that fore-

casters are capable of providing confident forecast

signals, but should not be relied upon to predict the

spread and come up with probabilities. The fact that the

CPCcalib has higher median/mean LSSs and RPSSs

than CPCoff is an indicator that forecasters tend to

imagine the spread is wider than it really is. By adopting

the CPCcalib strategy, the forecaster is also relieved of

the responsibility to properly adhere to the probability

distribution, and does not have to generate forecast

probabilities for a specific cutoff or number of cate-

gories. It is difficult to envision a forecaster reliably

creating probabilities for nine ENSO categories, so it is

encouraging that the CPCcalib approach is capable of

skillfully providing strength information.
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APPENDIX

Converting a Three-Category Probability Forecast
into a Gaussian PDF

For any three-category probability forecast, there

is a Gaussian distribution with matching probabilities.

Suppose that Pb is the forecast probability of being

below the threshold xb, and PA is the forecast proba-

bility of exceeding the threshold xa. The Gaussian

forecast distribution with mean mf and variance s2
f has

matching probabilities if

FIG. 7. As in Fig. 5, but for nine-category ENSO outlooks. CPCoff was not generated for nine categories, so only NMMEcalib (orange)

and CPCcalib (black) are displayed.
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